Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses
نویسندگان
چکیده
KEY POINTS Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. ABSTRACT Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system.
منابع مشابه
Paired Stimulation to Promote Lasting Augmentation of Corticospinal Circuits
After injury, electrical stimulation of the nervous system can augment plasticity of spared or latent circuits through focal modulation. Pairing stimulation of two parts of a spared circuit can target modulation more specifically to the intended circuit. We discuss 3 kinds of paired stimulation in the context of the corticospinal system, because of its importance in clinical neurorehabilitation...
متن کاملOrigin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.
A magnetic transcranial conditioning stimulus given over the motor cortex at intensities below active threshold for obtaining motor-evoked potentials (MEPs) facilitates EMG responses evoked at rest in hand muscles by a suprathreshold magnetic stimulus given 10-25 ms later. This is known as intracortical facilitation (ICF). We recorded descending volleys produced by single and paired magnetic mo...
متن کاملSpike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
Recovery of lower-limb function after spinal cord injury (SCI) likely depends on transmission in the corticospinal pathway. Here, we examined whether paired corticospinal-motoneuronal stimulation (PCMS) changes transmission at spinal synapses of lower-limb motoneurons in humans with chronic incomplete SCI and aged-matched controls. We used 200 pairs of stimuli where corticospinal volleys evoked...
متن کاملMotor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spin...
متن کاملMEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کامل